Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463994

RESUMO

Human genetic studies have repeatedly associated SNPs near the gene ADAMTS7 with atherosclerotic cardiovascular disease. Subsequent investigations in mice demonstrated that ADAMTS7 is proatherogenic, induced in response to vascular injury, and alters smooth muscle cell function. However, the mechanisms governing this function and its relationship to atherosclerosis remain unclear. Here, we report the first conditional Adamts7 transgenic mouse in which the gene can be conditionally overexpressed in smooth muscle cells, mimicking its induction in atherosclerosis. We observed that smooth muscle cell Adamts7 overexpression results in a 3.5-fold increase in peripheral atherosclerosis, coinciding with an expansion of smooth muscle foam cells. RNA sequencing of Adamts7 overexpressed primary smooth muscle cells revealed an upregulation in the expression of lipid uptake genes. Subsequent experiments in primary smooth muscle cells demonstrated that increased Spi1 and Cd36 expression leads to increased smooth muscle cell oxLDL uptake. To uncover ADAMTS7 expression in human disease, we have interrogated the largest scRNA-seq dataset of human carotid atherosclerosis. This analysis discovered that endothelial cells had the highest expression level of ADAMTS7 with lesser expression in smooth muscle cells, fibroblasts, and mast cells. Subsequent conditional knockout studies in smooth muscle cells surprisingly showed no change in atherosclerosis, suggesting redundant expression of this secreted factor in the vessel wall. Finally, mice overexpressing Adamts7 in endothelial cells also exhibit increased atherosclerosis, suggesting that multiple vascular cell types can contribute to ADAMTS7-mediated foam cell expansion. In summary, Adamts7 is expressed by multiple vascular cell types in atherosclerosis, and ADAMTS7 promotes oxLDL uptake in smooth muscle cells, increasing smooth muscle foam cell formation and peripheral atherosclerosis in mice.

3.
Arterioscler Thromb Vasc Biol ; 44(4): 930-945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385291

RESUMO

BACKGROUND: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS: We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Células Endoteliais/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Doenças das Artérias Carótidas/patologia , Epitopos/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
Nature ; 627(8003): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383788

RESUMO

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Assuntos
Tomada de Decisões , Vias Neurais , Lobo Parietal , Sinapses , Cálcio/análise , Cálcio/metabolismo , Tomada de Decisões/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Aprendizagem/fisiologia , Microscopia Eletrônica , Inibição Neural , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Lobo Parietal/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Realidade Virtual , Modelos Neurológicos
5.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106104

RESUMO

Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.

6.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745401

RESUMO

The cerebellar cortex contributes to diverse behaviors by transforming mossy fiber inputs into predictions in the form of Purkinje cell (PC) outputs, and then refining those predictions1. Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex2, and are vital to cerebellar processing1,3. MLIs are thought to primarily inhibit PCs and suppress the plasticity of excitatory synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs4-7, but the functional significance of these connections is not known1,3. Behavioral studies suggest that cerebellar-dependent learning is gated by disinhibition of PCs, but the source of such disinhibition has not been identified8. Here we find that two recently recognized MLI subtypes2, MLI1 and MLI2, have highly specialized connectivity that allows them to serve very different functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond time scale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, they primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent learning8. These findings require a major reevaluation of processing within the cerebellum in which disinhibition, a powerful circuit motif present in the cerebral cortex and elsewhere9-17, greatly increases the computational power and flexibility of the cerebellum. They also suggest that millisecond time scale synchronous firing of electrically-coupled MLI1s helps regulate the output of the cerebellar cortex by synchronously pausing PC firing, which has been shown to evoke precisely-timed firing in PC targets18.

7.
Neuron ; 111(20): 3211-3229.e9, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37725982

RESUMO

Across mammalian skin, structurally complex and diverse mechanosensory end organs respond to mechanical stimuli and enable our perception of dynamic, light touch. How forces act on morphologically dissimilar mechanosensory end organs of the skin to gate the requisite mechanotransduction channel Piezo2 and excite mechanosensory neurons is not understood. Here, we report high-resolution reconstructions of the hair follicle lanceolate complex, Meissner corpuscle, and Pacinian corpuscle and the subcellular distribution of Piezo2 within them. Across all three end organs, Piezo2 is restricted to the sensory axon membrane, including axon protrusions that extend from the axon body. These protrusions, which are numerous and elaborate extensively within the end organs, tether the axon to resident non-neuronal cells via adherens junctions. These findings support a unified model for dynamic touch in which mechanical stimuli stretch hundreds to thousands of axon protrusions across an end organ, opening proximal, axonal Piezo2 channels and exciting the neuron.


Assuntos
Mecanotransdução Celular , Células de Merkel , Animais , Células de Merkel/fisiologia , Mecanotransdução Celular/fisiologia , Imageamento Tridimensional , Canais Iônicos/metabolismo , Mecanorreceptores/fisiologia , Mamíferos/metabolismo
8.
Neuron ; 111(20): 3230-3243.e14, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37562405

RESUMO

Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Células Receptoras Sensoriais/fisiologia , Propriocepção/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo
9.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398440

RESUMO

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles. Because individual muscles may be used in many different behaviors, MN activity must be flexibly coordinated by dedicated premotor circuitry, the organization of which remains largely unknown. Here, we use comprehensive reconstruction of neuron anatomy and synaptic connectivity from volumetric electron microscopy (i.e., connectomics) to analyze the wiring logic of motor circuits controlling the Drosophila leg and wing. We find that both leg and wing premotor networks are organized into modules that link MNs innervating muscles with related functions. However, the connectivity patterns within leg and wing motor modules are distinct. Leg premotor neurons exhibit proportional gradients of synaptic input onto MNs within each module, revealing a novel circuit basis for hierarchical MN recruitment. In comparison, wing premotor neurons lack proportional synaptic connectivity, which may allow muscles to be recruited in different combinations or with different relative timing. By comparing the architecture of distinct limb motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.

10.
medRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37502836

RESUMO

Background: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results: We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.

11.
Curr Atheroscler Rep ; 25(8): 447-455, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354304

RESUMO

PURPOSE OF REVIEW: Genome-wide association studies have repeatedly linked the metalloproteinase ADAMTS7 to coronary artery disease. Here we aim to highlight recent findings surrounding the human genetics of ADAMTS7, novel mouse models that investigate ADAMTS7 function, and potential substrates of ADAMTS7 cleavage. RECENT FINDINGS: Recent genome-wide association studies in coronary artery disease have replicated the GWAS signal for ADAMTS7 and shown that the signal holds true even across different ethnic groups. However, the direction of effect in humans remains unclear. A recent novel mouse model revealed that the proatherogenicity of ADAMTS7 is derived from its catalytic functions, while at the translational level, vaccinating mice against ADAMTS7 reduced atherosclerosis. Finally, in vitro proteomics approaches have identified extracellular matrix proteins as candidate substrates that may be causal for the proatherogenicity of ADAMTS7. ADAMTS7 represents an enticing target for therapeutic intervention. The recent studies highlighted here have replicated prior findings, confirming the genetic link between ADAMTS7 and atherosclerosis, while providing further evidence in mice that ADAMTS7 is a targetable proatherogenic enzyme.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Animais , Camundongos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Proteína ADAMTS7/genética , Estudo de Associação Genômica Ampla , Aterosclerose/genética
12.
ArXiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911282

RESUMO

Comprehensive, synapse-resolution imaging of the brain will be crucial for understanding neuronal computations and function. In connectomics, this has been the sole purview of volume electron microscopy (EM), which entails an excruciatingly difficult process because it requires cutting tissue into many thin, fragile slices that then need to be imaged, aligned, and reconstructed. Unlike EM, hard X-ray imaging is compatible with thick tissues, eliminating the need for thin sectioning, and delivering fast acquisition, intrinsic alignment, and isotropic resolution. Unfortunately, current state-of-the-art X-ray microscopy provides much lower resolution, to the extent that segmenting membranes is very challenging. We propose an uncertainty-aware 3D reconstruction model that translates X-ray images to EM-like images with enhanced membrane segmentation quality, showing its potential for developing simpler, faster, and more accurate X-ray based connectomics pipelines.

13.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993253

RESUMO

Specialized mechanosensory end organs within mammalian skin-hair follicle-associated lanceolate complexes, Meissner corpuscles, and Pacinian corpuscles-enable our perception of light, dynamic touch 1 . In each of these end organs, fast-conducting mechanically sensitive neurons, called Aß low-threshold mechanoreceptors (Aß LTMRs), associate with resident glial cells, known as terminal Schwann cells (TSCs) or lamellar cells, to form complex axon ending structures. Lanceolate-forming and corpuscle-innervating Aß LTMRs share a low threshold for mechanical activation, a rapidly adapting (RA) response to force indentation, and high sensitivity to dynamic stimuli 1-6 . How mechanical stimuli lead to activation of the requisite mechanotransduction channel Piezo2 7-15 and Aß RA-LTMR excitation across the morphologically dissimilar mechanosensory end organ structures is not understood. Here, we report the precise subcellular distribution of Piezo2 and high-resolution, isotropic 3D reconstructions of all three end organs formed by Aß RA-LTMRs determined by large volume enhanced Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) imaging. We found that within each end organ, Piezo2 is enriched along the sensory axon membrane and is minimally or not expressed in TSCs and lamellar cells. We also observed a large number of small cytoplasmic protrusions enriched along the Aß RA-LTMR axon terminals associated with hair follicles, Meissner corpuscles, and Pacinian corpuscles. These axon protrusions reside within close proximity to axonal Piezo2, occasionally contain the channel, and often form adherens junctions with nearby non-neuronal cells. Our findings support a unified model for Aß RA-LTMR activation in which axon protrusions anchor Aß RA-LTMR axon terminals to specialized end organ cells, enabling mechanical stimuli to stretch the axon in hundreds to thousands of sites across an individual end organ and leading to activation of proximal Piezo2 channels and excitation of the neuron.

15.
Nature ; 613(7944): 543-549, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36418404

RESUMO

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Assuntos
Córtex Cerebelar , Rede Nervosa , Vias Neurais , Neurônios , Animais , Camundongos , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Córtex Cerebelar/ultraestrutura , Redes Neurais de Computação , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Microscopia Eletrônica de Transmissão
16.
Nat Methods ; 20(2): 295-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585455

RESUMO

We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient-a critical requirement for the processing of future petabyte-sized datasets.


Assuntos
Processamento de Imagem Assistida por Computador , Neurônios , Processamento de Imagem Assistida por Computador/métodos
17.
Nat Neurosci ; 25(6): 702-713, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35578131

RESUMO

To understand how the cerebellar cortex transforms mossy fiber (MF) inputs into Purkinje cell (PC) outputs, it is vital to delineate the elements of this circuit. Candelabrum cells (CCs) are enigmatic interneurons of the cerebellar cortex that have been identified based on their morphology, but their electrophysiological properties, synaptic connections and function remain unknown. Here, we clarify these properties using electrophysiology, single-nucleus RNA sequencing, in situ hybridization and serial electron microscopy in mice. We find that CCs are the most abundant PC layer interneuron. They are GABAergic, molecularly distinct and present in all cerebellar lobules. Their high resistance renders CC firing highly sensitive to synaptic inputs. CCs are excited by MFs and granule cells and are strongly inhibited by PCs. CCs in turn primarily inhibit molecular layer interneurons, which leads to PC disinhibition. Thus, inputs, outputs and local signals converge onto CCs to allow them to assume a unique role in controlling cerebellar output.


Assuntos
Córtex Cerebelar , Interneurônios , Animais , Córtex Cerebelar/fisiologia , Cerebelo/fisiologia , Interneurônios/fisiologia , Camundongos , Neurônios/fisiologia , Células de Purkinje/fisiologia
18.
Cell Rep ; 38(8): 110416, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196485

RESUMO

Neuron-glia interactions play a critical role in the regulation of synapse formation and circuit assembly. Here we demonstrate that canonical Sonic hedgehog (Shh) pathway signaling in cortical astrocytes acts to coordinate layer-specific synaptic connectivity. We show that the Shh receptor Ptch1 is expressed by cortical astrocytes during development and that Shh signaling is necessary and sufficient to promote the expression of genes involved in regulating synaptic development and layer-enriched astrocyte molecular identity. Loss of Shh in layer V neurons reduces astrocyte complexity and coverage by astrocytic processes in tripartite synapses; conversely, cell-autonomous activation of Shh signaling in astrocytes promotes cortical excitatory synapse formation. Furthermore, Shh-dependent genes Lrig1 and Sparc distinctively contribute to astrocyte morphology and synapse formation. Together, these results suggest that Shh secreted from deep-layer cortical neurons acts to specialize the molecular and functional features of astrocytes during development to shape circuit assembly and function.


Assuntos
Astrócitos , Proteínas Hedgehog , Astrócitos/metabolismo , Proteínas Hedgehog/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo
19.
Curr Biol ; 31(23): 5163-5175.e7, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34637749

RESUMO

To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception.


Assuntos
Drosophila , Propriocepção , Animais , Movimento , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia
20.
J Radiol Case Rep ; 15(3): 19-28, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34267867

RESUMO

We present the case of a 79-year-old male, who was initially treated for mucosa-associated lymphoid tissue lymphoma (MALT lymphoma) of the right eyelid, and later for disease relapse in the stomach. During follow up, he was noted to have developed left arm nodules just medial to the proximal biceps muscle, which were found to be multiply enlarged lymph nodes on subsequent ultrasound imaging. Excisional biopsy of these nodes revealed MALT lymphoma. He was initially referred for consideration of radiation, but a restaging F-18 fluorodeoxyglucose positron emission tomography integrated with computed tomography (F-18 FDG PET/CT) further identified a focus of suspicious uptake in left calf, which was later also biopsy proven to be MALT lymphoma. His disease was upstaged as the result of this later finding, and the overall recommendation for treatment changed to favor systemic treatment with Rituximab.


Assuntos
Tecido Linfoide/patologia , Linfoma de Zona Marginal Tipo Células B/patologia , Mucosa/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Fluordesoxiglucose F18 , Humanos , Tecido Linfoide/diagnóstico por imagem , Linfoma de Zona Marginal Tipo Células B/diagnóstico por imagem , Masculino , Mucosa/diagnóstico por imagem , Estadiamento de Neoplasias , Conduta Expectante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...